ラベル #モーメント法 の投稿を表示しています。 すべての投稿を表示
ラベル #モーメント法 の投稿を表示しています。 すべての投稿を表示

2017年7月22日土曜日

14MHz キュビカル・クワッド・アンテナの解析

2素子のキュビカル・クアッドは、立体構造になるため、短波帯では大変大型になり、その大きさから高性能への期待が高い。


図1. キュビカル・クワッドの形状

一波長アンテナで、14MHzで5mx5mのループが2個となり、大変巨大な構造になる。
それだけに、性能への心情的な期待感は大きくなる。
しかし、一方、風に弱く、よほど丈夫に作らないと、短期間に簡単に壊れてしまう。


図2, 利得とFB比

実効利得は、高さ10mで、約10dBi で十分に高いゲインが得られている。
この1/2波長の高さが、垂直面パタンの乱れが一番少ない。

心情的には、3素子八木の利得を超えて欲しいが、そうした大きな期待に反し、最新のアンテナ解析理論モーメント法での計算値は、2素子八木と同等となった。


図3. SWR特性

クワッド系のアンテナは、この計算では、アンテナインピーダンスが約100Ωでバンド中心でも、50Ω給電線ではミスマッチで、SWRは2を超え、またQも高いために、バンド幅は狭くなり、送信アンテナにはそのままでは使えない。
送信可能にするには、2:1(100Ω:50Ω)のインピーダンスマッチング用バランが必要になる。

巷の噂では、「同調の鋭さが高いことがアンテナ利得の高性能を意味する」という伝統的主張があるが、それは、事実と異なっている、と考えられる。
アンテナのゲインと、同調の鋭さ(Qの高さ)は、ここのブログの解析でも、直接的関連は見られていない。

反例:
例えば、ヘンテナはQが高く同調が狭く、利得は2素子八木よりかなり低くなり、かつQが低く広帯域の2素子八木のほうが利得が高い。


図4. 輻射パターン

良いFB比と、パターンが割れていない垂直面パタンが得られている。
クワッド・アンテナは、地上高が低くても、低い輻射角が得られ八木アンテナより高性能、と言われているが、計算結果は、言われてきた定説と異なってしまった。


図5. インピーダンス特性等

給電点のインピーダンスは100Ωと高いので、50Ω給電線の接続ではアンマッチで、SWRは2.0を超えてしまう。
ループ・アンテナは、Qが八木アンテナより一ずっと高くなり、送信可能なバンド幅は狭くなる。
バンド幅は狭くなるので、バンド幅が広いとする従来の定説と異なる結果となった。


図6. 最適化計算

SWRは2.0を超え、ゲインは3素子八木に及ばず、打ち上げ角も八木より優位という結果が得られていない。

図7. アンテナサイズ(最適化済)


構造的に機械的強度の高い八木アンテナのほうが、キュビカル・クワッドより長期使用に耐え、性能も八木アンテナのほうがバンド幅が広い。
これまで言われてきたほど、打ち上げ角が低い特性も得られなかった。


キュビカルクワッドは、3素子アンテナよりも利得が高く、打ち上げ角がずっと低いと言われてきており、そのため、海外との遠距離通信に優位である、との心情的な期待待感が高まってしまう。

実際に、キュビカル・クワッドを使うと海外と交信でき、ダイポールと比較すると、その性能は雲泥の差を実感する。

しかし、モーメント法の解析で、従来の経験的定説との整合性を見てみると、あまり良い結果ではなかった。

アンテナの巨大さに圧倒され、高性能への感情的な期待感の心情が高まってしまい、電気工学/電磁気学上の科学的検証主義の基礎的思考を失った思い込みに走らせるほど、キュビカル・クワッドへの期待感は大きいのもがあった、と感じた。


ブログ記事目次へ戻る



2017年7月19日水曜日

50MHz 4種アンテナ(ダイポール、ヘンテナ、スカイドア、2素子八木)性能比較

1. 50MHz 4種アンテナ(ダイポール、ヘンテナ、スカイドア、2素子八木)性能比較


V型ダイポール・アンテナ(バンザイ・アンテナ)の実行利得は、ヘンテナやスカイドアに約-1dB程度の実効利得でかなりのハイゲインで、Qが低いので広帯域です。
高電力送信対応も容易です。

2素子八木は、ヘンテナやスカイドアの利得に勝り、Qが低いので広帯域です。
高電力送信対応も容易です。


2.  V型ダイポール(バンザイ・ダイポール) (オリジナル最適化)






Qが低いので、バンド幅が広くとれ、CW-SSB-AM-FMバンドまで無調整で送信可能。
インピーダンス・マッチングは、V型の角度で50Ωに近づけます。








3.   ヘンテナ (JH1FCZさん考案型+MMANAによる最適化型)


縦長さ=3mもあるので、高さ3mにあげると、大変巨大なアンテナになります。




3m高さ(1/2波長)で、最も垂直面パタンが割れずに素直な打ち上げ角になります。



Qが高いので、バンド幅が狭くなり、同調マッチングはむつかくなる特性が見られます。







4. 2素子八木アンテナ(八木アンテナの改良)




CW-SSB-AM-FMまで広い帯域でSWRが低く送信可能です。
Qが低いので、アンテナの調整はしやすくなる特性が見られます。


バックの混信を避けられます。






5. Skydoor アンテナ(JA1HWOさん考案)


ヘンテナより縦の長さが小さいので小型化されています。




この条件では、やや複雑なSWR変化が見られます。
帯域はヘンテナよりやや広くなっています。











2017年4月23日日曜日

ヘンテナのSWR調整方法を計算で求める(ヘンテナの謎を解き明かす)

50MHz(6mバンド)用アンテナとして人気のある「ヘンテナ」を、「モーメント法」[1]に基づくアンテナ・シミュレータMMANA(Copyright by Mr.Mori/JE3HTT)を使い、その謎の解明を試みました。

課題:
(1)ヘンテナを作ったが、SWRが送信の実用範囲と言われている1.5以下に下がらない。
(2)給電エレメントをずらしても、SWRの下がる位置が現れない。
(3)そもそも、どの位置に給電エレメントを位置づけるのか、同調周波数と給電エレメントの配置場所があらかじめわからない。
(4)使える周波数の帯域幅がわからない。
(5)どうみても3〜5エレ八木と同等の利得が得られるという噂は本当なのか。

1. マッチング・エレメント位置とヘンテナの電気的特性の計算データ

「ヘンテナ」の特徴、優れている点に、長方形ループ(全体長=2λ)の形を変化させずに、給電エレメント位置をずらずだけで、SWRが1.5以下の送信用の実用範囲に入るというものがあります。
項番#4に示した、給電エレメントを、それぞれループ下側から、95cm,90cm,85cmと5cm間隔で3点を取り、その電気的特性を計算しました。
その結果は以下の通りです。

Hentena Tuning  
Stab   L     C     Q     f0         BW     SWR at 50.1MHz    Z(Ohm)
95cm 7.2uH 1.5pF 29.4 49.320MHz 1680.4KHz 3.15/50.1MHz   73.40+j69.46
90cm 7.0uH 1.4pF 28.7 50.036MHz 1742.4KHz 1.55/50.1MHz   76.95+j5.68
85cm 6.7uH 1.5pF 27.6 50.755MHz 1840.1KHz 2.63/50.1MHz   79.83-j56.06

この計算結果では、確かに同調周波数 50.036MHz に、SWR=1.55 の最小値が現れました。
Qが高いアンテナで、同調がシャープになる特徴が見られます。

5cmの給電エレメント移動でも700KHz〜800KHzくらい同調点が敏感に変化する特性が出ました。
インピーダンスの抵抗成分(インピーダンス実数成分)は77Ω前後で、インピーダンスの虚数部が、給電エレメントの位置で、インピーダンス変化は、主として、インダクタンス成分の変化として現れました。

給電用フィーダは、特性インピーダンス50Ωの5D2Vよりも、特性インピーダンス75Ωの5C2Vがマッチング結果が良好になることが分かりました。


2. マッチング・エレメント位置によるSWR特性の変化特性

図2.1  SWR (給電エレメント位置=85cm)

図2.1 のように、給電エレメント位置を、90cmから5cm上にずらすと、SWR同調点は、大きくずれ、750KHzくらいずれてしまい、SWR=3.15 で、これは、CW/SSB利用帯域では利用できない結果です。


図2.2  SWR (給電エレメント位置=90cm)

図2.1 のように、給電エレメント位置が、90cmで、SWR同調点は 50.036MHzで、SWR=1.55 で、これは、CW/SSB利用帯域では利用できそうな値になっています。



図2.3  SWR (給電エレメント位置=95cm)

図2.3 のように、給電エレメント位置を、90cmから5cm下にずらすと、SWR同調点は、大きく下側にずれ、750KHzくらい下がってしまい、50.1MHzで、SWR=3.15 で、これは、CW/SSB利用帯域では利用できない結果です。


以上の結果から、目的周波数に同調させるには、1cmくらいの精度で給電エレメント位置を調整する必要があり、5cm間隔では一挙に750KHzも同調がずれ、SWRは3.0を簡単に越えてしまう結果になりました。

この給電エレメントのスライド調整は、同調周波数がシャープで、スライド位置に約1cm精度の調整が必要となる大変センシティブな特性があるようです。


3. マッチング・エレメント位置によるインピーダンスの変化特性

項番#1に示したインピーダンス計算値に従った、インピーダンスの実部、虚部の変化を、図3.1〜図3.3に示しました。
インピーダンスの虚数部=0 になる周波数が、「ヘンテナ」の同調点です。

確かに、ヘンテナの同調周波数は給電エレメント位置に敏感に対応して大きく変化するという、同調点がシャープで送信可能な周波数帯域が狭くなる特性が見られます。


図3.1 インピーダンス特性 (給電エレメント位置=85cm)

図3.2 インピーダンス特性(給電エレメント位置=90cm)

図3.3 インピーダンス特性(給電エレメント位置=95cm)

4. マッチング・エレメント位置の図

図4.1〜図4.3は、それぞれ給電エレメント位置=85cm,90cm,95cmの時の、エレメント編集画面のショットを示しました。

図4.1 エレメントの編集(給電エレメント位置=85cm) 

図4.2 エレメントの編集(給電エレメント位置=90cm) 

図4.3 エレメントの編集(給電エレメント位置=95cm) 

5. 実験での検証

僕の実験では、横1m、縦3mの長方形ループで、SWRは3.0を越えてしまい、送信可能な特性は得られませんでした。
給電エレメントは、IV線3mmΦを使い、縦エレメントに5cm間隔でビニル被覆を向いた調整点を離散させてとったため、これでは、同調周波数が目的周波数に合わなくても仕方ない結果だったと思います。(屋根上での調整はこの精度でも限界で、調整作業は大変危険です。広場でマスト高を約1/2波長にするのが良さそうです。)

「ループアンテナは送信可能な周波数帯域が広い」と教わっていたので、「ヘンテナ」も50MHz〜54MHz全帯域で使える、と実験当時思ってましたが、間違って思い込んだ可能性があります。
(良い結果がでず申し訳ない気持ちがありますが、計算と、実験結果は矛盾していないと思います。)

別記事で、「ヘンテナ」のエレメント長を最適化したものでは、横エレメント=90cmで、CW/SSBバンド向けに好結果になり、やはり、75Ωの給電線5C2Vの利用が良い、という計算結果でした。


[ Reference ]
[1] R. F. Harrington: “Field Computation by Moment Methods”, IEEE Press, New York, 1993
(Recommended)


ブログ記事目次へ戻る